On Short-Wave Diffraction by a Strongly Elongated Body of Revolution
- 作者: Popov M.M.1, Semtchenok N.M.1, Kirpichnikova N.Y.1
-
隶属关系:
- St. Petersburg Department of Steklov Mathematical Institute RAS
- 期: 卷 226, 编号 6 (2017)
- 页面: 795-809
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240069
- DOI: https://doi.org/10.1007/s10958-017-3567-1
- ID: 240069
如何引用文章
详细
This article deals with short-wave diffraction by a strongly elongated body of revolution (an axially symmetric problem). In this case, the classical method of the Leontovich–Fock parabolic equation (equations of the Schrödinger type, to be more precise) appears to be nonapplicable, because the corresponding recurrent system of equations loses its asymptotic nature, and the equations themselves, including the main parabolic equation, gain singularity in their coefficients. This paper introduces a new boundary layer in a neighborhood of the light-shadow boundary, which is determined by other scales than the Fock boundary layer. In the arising main parabolic equation, the variables are not separated, so it turns out to be impossible to construct a solution in analytic form. In this case we state a nonstationary scattering problem, where the arc length along the geodesic lines (meridians) plays the part of time, and the problem itself is resolved by numerical methods. Bibliography: 11 titles.
作者简介
M. Popov
St. Petersburg Department of Steklov Mathematical Institute RAS
编辑信件的主要联系方式.
Email: mpopov@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
N. Semtchenok
St. Petersburg Department of Steklov Mathematical Institute RAS
Email: mpopov@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
N. Kirpichnikova
St. Petersburg Department of Steklov Mathematical Institute RAS
Email: mpopov@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
