ON the p-Harmonic Robin Radius in the Euclidean Space


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For p > 1, the notion of the p-harmonic Robin radius of a domain in the space n, n ≥ 2, is introduced. In the case where the corresponding part of the boundary degenerates, the Robin–Neumann radius is considered. The monotonicity of the p-harmonic Robin radius under some deformations of a domain is proved. Some extremal decomposition problems in the Euclidean space are solved. The definitions and proofs are based on the technique of moduli of curve families. Bibliography: 23 titles.

作者简介

S. Kalmykov

School of Mathematical Sciences, Shanghai Jiao Tong University; Institute of Applied Mathematics of the FEB RAS

编辑信件的主要联系方式.
Email: sergeykalmykov@inbox.ru
中国, Shanghai; Vladivostok

E. Prilepkina

Far Eastern Federal University; Vladivostok Department of the Russian Customs Academy

Email: sergeykalmykov@inbox.ru
俄罗斯联邦, Vladivostok; Vladivostok

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017