Interaction of the Hecke–Shimura Rings and Zeta Functions
- 作者: Andrianov A.1
-
隶属关系:
- St.Petersburg Department of the Steklov Mathematical Institute
- 期: 卷 225, 编号 6 (2017)
- 页面: 841-847
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239848
- DOI: https://doi.org/10.1007/s10958-017-3500-7
- ID: 239848
如何引用文章
详细
An automorphic structure on a Lie group consists of the Hecke–Shimura ring of an arithmetic discrete subgroup and a linear representation of the ring on an invariant space of automorphic forms given by Hecke operators. The paper is devoted to interactions (transfer homomorphisms) of the Hecke–Shimura rings of integral symplectic groups and integral orthogonal groups of integral positive definite quadratic forms. Bibliography: 10 titles.
作者简介
A. Andrianov
St.Petersburg Department of the Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: anandr@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
