Differentiation of Induced Toric Tiling and Multidimensional Approximations of Algebraic Numbers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers the induced tilings \( \mathcal{T} \) = \( \mathcal{T} \) |Kr of the D-dimensional torus \( \mathbb{T} \)D generated by embedded karyons Kr. On \( \mathcal{T} \) , differentiation operations σ : \( \mathcal{T} \) −→\( \mathcal{T} \)σ are defined, which provide the induced tilings \( \mathcal{T} \)σ = \( \mathcal{T} \) |Krσ of the same torus \( \mathbb{T} \)D with the derivative karyon Krσ. They are used for approximation of 0 ∈ \( \mathbb{T} \)D by an infinite sequence of points xj ≡ jα mod ℤD, j = 0, 1, 2, . . . , where α = (α1, . . . , αD) is a vector whose coordinates α1, . . . , αD belong to an algebraic field ℚ(θ) of degree D+1 over the rational field ℚ. To this end, an infinite sequence of convex parallelohedra T (i)\( \mathbb{T} \)D, i = 0, 1, 2, . . ., is constructed, and natural orders m(0) < m(1) < · · · < m(i) < · · · for T (i) are defined. Then the above parallelohedra contain a subsequence of points \( {\left\{{x}_{j^{\prime }}\right\}}_{j^{\prime }=1}^{\infty } \) that are the best approximations of 0 ∈ \( \mathbb{T} \)D. Bibliography: 25 titles.

作者简介

V. Zhuravlev

Vladimir State University

编辑信件的主要联系方式.
Email: vzhuravlev@mail.ru
俄罗斯联邦, Vladimir

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017