Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 222, № 5 (2017)

Article

Growth of Norms in L2 of Derivatives of the Steklov Functions and Properties Defined by the Best Approximations and Fourier Coefficients

Babushkin M., Zhuk V.

Аннотация

In the paper, for periodic functions, a connection between integrals of norms in L2 of derivatives of the Steklov functions and series constructed from Fourier coefficients and the best approximations in L2 is established, and the question on their simultaneous convergence or divergence is examined. Similar investigations are carried out for even and odd periodic functions. Bibliography: 13 titles.

Journal of Mathematical Sciences. 2017;222(5):525-543
pages 525-543 views

Differentiation of Induced Toric Tiling and Multidimensional Approximations of Algebraic Numbers

Zhuravlev V.

Аннотация

The paper considers the induced tilings \( \mathcal{T} \) = \( \mathcal{T} \) |Kr of the D-dimensional torus \( \mathbb{T} \)D generated by embedded karyons Kr. On \( \mathcal{T} \) , differentiation operations σ : \( \mathcal{T} \) −→\( \mathcal{T} \)σ are defined, which provide the induced tilings \( \mathcal{T} \)σ = \( \mathcal{T} \) |Krσ of the same torus \( \mathbb{T} \)D with the derivative karyon Krσ. They are used for approximation of 0 ∈ \( \mathbb{T} \)D by an infinite sequence of points xj ≡ jα mod ℤD, j = 0, 1, 2, . . . , where α = (α1, . . . , αD) is a vector whose coordinates α1, . . . , αD belong to an algebraic field ℚ(θ) of degree D+1 over the rational field ℚ. To this end, an infinite sequence of convex parallelohedra T (i)\( \mathbb{T} \)D, i = 0, 1, 2, . . ., is constructed, and natural orders m(0) < m(1) < · · · < m(i) < · · · for T (i) are defined. Then the above parallelohedra contain a subsequence of points \( {\left\{{x}_{j^{\prime }}\right\}}_{j^{\prime }=1}^{\infty } \) that are the best approximations of 0 ∈ \( \mathbb{T} \)D. Bibliography: 25 titles.

Journal of Mathematical Sciences. 2017;222(5):544-584
pages 544-584 views

Bounded Remainder Sets

Zhuravlev V.

Аннотация

The paper considers the category (\( \mathcal{T} \), S, X) consisting of mappings S :\( \mathcal{T} \) −→\( \mathcal{T} \) of spaces \( \mathcal{T} \) with distinguished subsets X ⊂ \( \mathcal{T} \). Let rX (i, x0) be the distribution function of points of an S-orbit x0, x1 = S(x0), . . . , xi−1 = Si−1(x0) getting into X, and let δX (i, x0) be the deviation defined by the equation rX (i, x0) = aX i + δX (i, x0), where aX i is the average value. If δX (i, x0) = O(1), then such sets X are called bounded remainder sets. In the paper, bounded remainder sets X are constructed in the following cases: (1) the space \( \mathcal{T} \) is the circle, torus, or the Klein bottle; (2) the map S is a rotation of the circle, a shift or an exchange mapping of the torus; (3) X is a fixed subset X ⊂ \( \mathcal{T} \) or a sequence of subsets depending on the iteration number i = 0, 1, 2, . . .. Bibliography: 27 titles.

Journal of Mathematical Sciences. 2017;222(5):585-640
pages 585-640 views

Inner Radius, Polarization, and Circular Truncation of a Set

Kuznetsov V.

Аннотация

The paper considers the difference between the reduced module m(B, 0) of an open set B, 0 ∈ B, and the reduced module m(Br, 0) of its circular truncation Br, where Br = B ∩ {|z| < r}. It is proved that this difference does not decrease under polarization and circular symmetrization. Bibliography: 6 titles.

Journal of Mathematical Sciences. 2017;222(5):641-644
pages 641-644 views

Geometric Function Theory. Jenkins’ Results. The method of Modules of Curve Families

Kuz’ina G.

Аннотация

Results and applications of the method of modules in geometric function theory are presented. The method was originally created by J. A. Jenkins, and further developed in works of the Leningrad–St. Petersburg mathematical school. A retrospective description of the origin of the method is given, and the determining role of Jenkins in the development of the method of the extremal metric is pointed out.

Journal of Mathematical Sciences. 2017;222(5):645-689
pages 645-689 views

Extreme Values of the Epstein Zeta Functions

Fomenko O.
Journal of Mathematical Sciences. 2017;222(5):690-702
pages 690-702 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».