On the Grothendieck–Serre Conjecture Concerning Principal G-Bundles Over Semilocal Dedekind Domains


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let R be a semilocal Dedekind domain, and let K be the field of fractions of R. Let G be a reductive semisimple simply connected R-group scheme such that every semisimple normal R-subgroup scheme of G contains a split R-torus \( {\mathbb{G}}_{m,R} \). It is proved that the kernel of the map

\( {H}_{\overset{\prime }{e}t}^1\left(R,\kern0.5em G\right)\to {H}_{\overset{\prime }{e}t}^1\left(K,\kern0.5em G\right) \)
induced by the inclusion of R into K is trivial. This result partially extends the Nisnevich theorem.

作者简介

I. Panin

St.Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: paniniv@gmail.com
俄罗斯联邦, St.Petersburg

A. Stavrova

St.Petersburg State University

Email: paniniv@gmail.com
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017