Representation of Solutions of Linear Differential Systems of the Second Order with Constant Delays
- 作者: Svoboda Z.1
-
隶属关系:
- Brno University of Technology Brno
- 期: 卷 222, 编号 3 (2017)
- 页面: 345-358
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239199
- DOI: https://doi.org/10.1007/s10958-017-3304-9
- ID: 239199
如何引用文章
详细
We deduce representations for the solutions of initial-value problems for n-dimensional differential equations of the second order with delays:
\( x^{{\prime\prime} }(t)=2 Ax^{\prime}\left( t-\tau \right)-\left({A}^2+{B}^2\right) x\left( t-2\tau \right) \)![]()
and
\( x^{{\prime\prime} }(t)=\left( A+ B\right) x^{\prime}\left( t-\tau \right)- A B x\left( t-2\tau \right) \)![]()
by using special delay matrix functions. Here, A and B are commuting (n × n)-matrices and τ > 0. Moreover, a formula connecting the delay matrix exponential function with delayed matrix sine and delayed matrix cosine is obtained. We also discuss common features of the considered equations.
作者简介
Z. Svoboda
Brno University of Technology Brno
编辑信件的主要联系方式.
Email: svobodaz@feec.vutbr.cz
捷克共和国, Brno-střed
补充文件
