Representation of Solutions of Linear Differential Systems of the Second Order with Constant Delays


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We deduce representations for the solutions of initial-value problems for n-dimensional differential equations of the second order with delays:

\( x^{{\prime\prime} }(t)=2 Ax^{\prime}\left( t-\tau \right)-\left({A}^2+{B}^2\right) x\left( t-2\tau \right) \)

and

\( x^{{\prime\prime} }(t)=\left( A+ B\right) x^{\prime}\left( t-\tau \right)- A B x\left( t-2\tau \right) \)

by using special delay matrix functions. Here, A and B are commuting (n × n)-matrices and τ > 0. Moreover, a formula connecting the delay matrix exponential function with delayed matrix sine and delayed matrix cosine is obtained. We also discuss common features of the considered equations.

作者简介

Z. Svoboda

Brno University of Technology Brno

编辑信件的主要联系方式.
Email: svobodaz@feec.vutbr.cz
捷克共和国, Brno-střed

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017