Spectral and pseudospectral functions of various dimensions for symmetric systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The main object of the paper is a symmetric system JyB(t)y = ⋋∆(t)y defined on an interval Ι = [a, b) with the regular endpoint a. Let φ(⋅, λ) be a matrix solution φ(⋅, λ) of this system of an arbitrary dimension, and let \( \left( V\kern0.5em f\right)(s)={\displaystyle \underset{I}{\int }{\varphi}^{\ast}\left( t, s\right)\varDelta (t) f(t) d t} \) be the Fourier transform of the function f(⋅) ∈ LΔ2(I). We define a pseudospectral function of the system as a matrix-valued distribution function σ(·) of the dimension nσ such that V is a partial isometry from \( {L}_{\varDelta}^2(I)\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em {L}^2\left(\sigma; \kern0.5em {\mathbb{C}}^{n_{\sigma}}\right) \) with minimally possible kernel. Moreover, we find the minimally possible value of nσ and parametrize all spectral and pseudospectral functions of every possible dimensions nσ by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov and Dym; Sakhnovich, Sakhnovich and Roitberg; Langer and Textorius.

作者简介

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

编辑信件的主要联系方式.
Email: vadim.mogilevskii@gmail.com
乌克兰, Poltava

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017