Spectral and pseudospectral functions of various dimensions for symmetric systems
- Authors: Mogilevskii V.1
-
Affiliations:
- V.G. Korolenko Poltava National Pedagogical University
- Issue: Vol 221, No 5 (2017)
- Pages: 679-711
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239079
- DOI: https://doi.org/10.1007/s10958-017-3259-x
- ID: 239079
Cite item
Abstract
The main object of the paper is a symmetric system Jy′ − B(t)y = ⋋∆(t)y defined on an interval Ι = [a, b) with the regular endpoint a. Let φ(⋅, λ) be a matrix solution φ(⋅, λ) of this system of an arbitrary dimension, and let \( \left( V\kern0.5em f\right)(s)={\displaystyle \underset{I}{\int }{\varphi}^{\ast}\left( t, s\right)\varDelta (t) f(t) d t} \) be the Fourier transform of the function f(⋅) ∈ LΔ2(I). We define a pseudospectral function of the system as a matrix-valued distribution function σ(·) of the dimension nσ such that V is a partial isometry from \( {L}_{\varDelta}^2(I)\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em {L}^2\left(\sigma; \kern0.5em {\mathbb{C}}^{n_{\sigma}}\right) \) with minimally possible kernel. Moreover, we find the minimally possible value of nσ and parametrize all spectral and pseudospectral functions of every possible dimensions nσ by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov and Dym; Sakhnovich, Sakhnovich and Roitberg; Langer and Textorius.
About the authors
Vadim Mogilevskii
V.G. Korolenko Poltava National Pedagogical University
Author for correspondence.
Email: vadim.mogilevskii@gmail.com
Ukraine, Poltava
Supplementary files
