On Intersection of Primary Subgroups of Odd Order in Finite Almost Simple Groups
- 作者: Zenkov V.I.1,2, Nuzhin Y.N.3
-
隶属关系:
- First President of Russia B. N. Yeltsin Ural Federal University
- Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
- Siberian Federal University
- 期: 卷 221, 编号 3 (2017)
- 页面: 384-390
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238988
- DOI: https://doi.org/10.1007/s10958-017-3232-8
- ID: 238988
如何引用文章
详细
We consider the question of the determination of subgroups A and B such that A∩Bg ≠ 1 for any g ∈ G for a finite almost simple group G and its primary subgroups A and B of odd order. We prove that there exist only four possibilities for the ordered pair (A,B).
作者简介
V. Zenkov
First President of Russia B. N. Yeltsin Ural Federal University; Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: V1I9Z52@mail.ru
俄罗斯联邦, Ekaterinburg; Ekaterinburg
Ya. Nuzhin
Siberian Federal University
Email: V1I9Z52@mail.ru
俄罗斯联邦, Krasnoyarsk
补充文件
