Metric Properties of Orlicz–Sobolev Classes
- 作者: Salimov R.R.1
-
隶属关系:
- Institute of Mathematics of the NAS of Ukraine
- 期: 卷 220, 编号 5 (2017)
- 页面: 633-642
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238894
- DOI: https://doi.org/10.1007/s10958-016-3206-2
- ID: 238894
如何引用文章
详细
The homeomorphisms of the Orlicz–Sobolev class Wloc1,φ under a condition of the Calderón type on φ in ℝn, n ≥ 3 are considered. For these classes of mappings, a number of theorems on the local behavior are established, and, in particular, an analog of the famous Gehring theorem on a local Lipschitz property, as well as various theorems on estimates of a distortion of the Euclidean distance are proved. In particular, the results hold for the homeomorphisms of the Sobolev classes Wloc1,p with p > n − 1.
作者简介
Ruslan Salimov
Institute of Mathematics of the NAS of Ukraine
编辑信件的主要联系方式.
Email: ruslan623@yandex.ru
乌克兰, Kiev
补充文件
