A Bound for the Maximal Probability in the Littlewood–Offord Problem
- 作者: Zaitsev A.Y.1
-
隶属关系:
- St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
- 期: 卷 219, 编号 5 (2016)
- 页面: 743-746
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238668
- DOI: https://doi.org/10.1007/s10958-016-3143-0
- ID: 238668
如何引用文章
详细
In this paper, we study a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric, infinitely divisible distributions. It is shown that the values at zero of the concentration functions of weighted sums of i.i.d. random variables may be estimated by the values at zero of the concentration functions of symmetric, infinitely divisible distributions with the Lévy spectral measures which are multiples of the sum of delta-measures at ±weights involved in constructing the weighted sums.
作者简介
A. Zaitsev
St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
编辑信件的主要联系方式.
Email: zaitsev@pdmi.ras.ru
俄罗斯联邦, St.Petersburg
补充文件
