On Schur 2-Groups


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A finite group G is called a Schur group if every Schur ring over G is the transitivity module of a point stabilizer in a subgroup of Sym(G) that contains all permutations induced by the right multiplications in G. It is proved that the group \( {\mathrm{\mathbb{Z}}}_2\times {\mathrm{\mathbb{Z}}}_{2^n} \) is Schur, which completes the classification of Abelian Schur 2-groups. It is also proved that any non-Abelian Schur 2-group of order larger than 32 is dihedral (the Schur 2-groups of smaller orders are known). Finally, the Schur rings over a dihedral 2-group G are studied. It turns out that among such rings of rank at most 5, the only obstacle for G to be a Schur group is a hypothetical ring of rank 5 associated with a divisible difference set.

作者简介

M. Muzychuk

Netanya Academic College

编辑信件的主要联系方式.
Email: muzy@netanya.ac.il
以色列, Netanya

I. Ponomarenko

St.Petersburg Department of the Steklov Mathematical Institute

Email: muzy@netanya.ac.il
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016