Decomposition of Elementary Transvection in Elementary Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let σ = (σij ) be an elementary net (elementary carpet) of additive subgroups of a commutative ring (in other words, a net without diagonal), n the order of σ, ω = (ωij ) the derived net with respect to σ, and Ω = (Ωij ) the net associated with the elementary group E(σ). It is assumed that ω ⊆ σ ⊆ Ω and Ω is the smallest (complemented) net containing σ. The main result consists in finding the decomposition of any elementary transvection tij(α) into the product of two matrices M1 ∈ 〈tij(σij), tji(σji)〉 and M2 ∈ G(τ), where \( \uptau =\left(\begin{array}{ll}{\varOmega}_{11}\hfill & {\upomega}_{12}\hfill \\ {}{\upomega}_{21}\hfill & {\varOmega}_{22}\hfill \end{array}\right) \).

作者简介

R. Dryaeva

North-Ossetian State University

编辑信件的主要联系方式.
Email: dryaeva-roksana@mail.ru
俄罗斯联邦, Vladicaucasus

V. Koibaev

North-Ossetian State University, South Mathematical Institute of the Russian Academy of Sciences

Email: dryaeva-roksana@mail.ru
俄罗斯联邦, Vladicaucasus

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016