Properties of the Riemannian Curvature of (α, β)-Metrics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we discuss some important properties of the Riemannian curvature of (α, β)-metrics. When the dimension of the manifold is greater than 2, we classify Randers metrics of weakly isotropic flag curvature (that is, Randers metrics of scalar flag curvature with isotropic S-curvature). Further, we characterize (α, β)-metrics of scalar flag curvature with isotropic S-curvature. We also characterize Einstein (α, β)-metrics and determine completely the local structure of Ricci-flat Douglas (α, β)-metrics when the dimension dim M ≥ 3.

作者简介

X. Cheng

School of Mathematics and Statistics, Chongqing University of Technology

编辑信件的主要联系方式.
Email: chengxy@cqut.edu.cn
中国, Chongqing

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016