On the Noncommutative Deformation of the Operator Graph Corresponding to the Klein Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the noncommutative operator graph ℒθdepending on a complex parameter θ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing n-shot capacity. We define a noncommutative group G and an algebra Aθwhich is the quotient of ℂG by a special algebraic relation depending on θ such that the matrix representation ϕ of Aθresults in the algebra ℳθgenerated by ℒθ. In the case of θ = ±1, the representation ϕ degenerates into a faithful representation of ℂK4, where K4is the Klein group. Thus, ℒθcan be regarded as a noncommutative deformation of the graph associated with the Klein group. Bibliography: 16 titles.

作者简介

G. Amosov

Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: gramos@mi.ras.ru
俄罗斯联邦, Moscow

I. Zhdanovskiy

Moscow Institute of Physics and Technology; Higher School of Economics

编辑信件的主要联系方式.
Email: ijdanov@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016