On the Chromatic Numbers of Integer and Rational Lattices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we give new upper bounds for the chromatic numbers for integer lattices and some rational spaces and other lattices. In particular, we have proved that for any concrete integer number d, the chromatic number of ℤn with critical distance \( \sqrt{2d} \) has a polynomial growth in n with exponent less than or equal to d (sometimes this estimate is sharp). The same statement is true not only in the Euclidean norm, but also in any lp norm. Moreover, we have given concrete estimates for some small dimensions as well as upper bounds for the chromatic number of pn, where by ℚp we mean the ring of all rational numbers having denominators not divisible by some prime numbers.

作者简介

V. Manturov

Peoples’ Friendship University of Russia

编辑信件的主要联系方式.
Email: vomanturov@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016