Matrix Factorization for Solutions of the Yang–Baxter Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study solutions of the Yang–Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra sℓ2, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of sℓ2, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles.

作者简介

S. Derkachov

St.Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: derkach@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

D. Chicherin

Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH, CNRS, UMR 5108 associée à l’Université de Savoie

Email: derkach@pdmi.ras.ru
法国, Annecy-le-Vieux

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016