Computation of RS-Pullback Transformations for Algebraic Painlevé VI Solutions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Algebraic solutions of the sixth Painlevé equation can be constructed with the help of RS-transformations of hypergeometric equations. Construction of these transformations includes specially ramified rational coverings of the Riemann sphere and the corresponding Schlesinger transformations (S-transformations). Some algebraic solutions can be constructed from rational coverings alone, without obtaining the corresponding pullbacked isomonodromy Fuchsian system, i.e., without the S part of the RS transformations. At the same time, one and the same covering can be used to pullback different hypergeometric equations, resulting in different algebraic Painlevé VI solutions. In the case of high degree coverings, construction of the S parts of the RS-transformations may represent some computational difficulties. This paper presents computation of explicit RS pullback transformations and derivation of algebraic Painlevé VI solutions from them. As an example, we present a computation of all seed solutions for pullbacks of hyperbolic hypergeometric equations. Bibliography: 26 titles.

作者简介

R. Vidunas

University of Tokyo

编辑信件的主要联系方式.
Email: rvidunas@gmail.com
日本, Tokyo

A. Kitaev

St.Petersburg Department of the Steklov Mathematical Institute

Email: rvidunas@gmail.com
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016