Extensions of the Quadratic Form of the Transverse Laplace Operator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the quadratic form of the Laplace operator in 3 dimensions written in spherical coordinates and acting on transverse components of vector-functions. Operators which act on parametrizing functions of one of the transverse components with angular momentum 1 and 2 appear to be fourth-order symmetric operators with deficiency indices (1, 1). We consider self-adjoint extensions of these operators and propose the corresponding extensions for the initial quadratic form. The relevant scalar product for angular momentum 2 differs from the original product in the space of vector-functions, but, nevertheless, it is still local in radial variable. Eigenfunctions of the operator extensions in question can be treated as stable soliton-like solutions of the corresponding dynamical system whose quadratic form is a functional of the potential energy.

作者简介

T. Bolokhov

St.Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: timur@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016