Extensions of the Quadratic Form of the Transverse Laplace Operator


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the quadratic form of the Laplace operator in 3 dimensions written in spherical coordinates and acting on transverse components of vector-functions. Operators which act on parametrizing functions of one of the transverse components with angular momentum 1 and 2 appear to be fourth-order symmetric operators with deficiency indices (1, 1). We consider self-adjoint extensions of these operators and propose the corresponding extensions for the initial quadratic form. The relevant scalar product for angular momentum 2 differs from the original product in the space of vector-functions, but, nevertheless, it is still local in radial variable. Eigenfunctions of the operator extensions in question can be treated as stable soliton-like solutions of the corresponding dynamical system whose quadratic form is a functional of the potential energy.

Авторлар туралы

T. Bolokhov

St.Petersburg Department of the Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: timur@pdmi.ras.ru
Ресей, St.Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016