Eigenvalues of the Laplacian in a Disk with the Dirichlet Condition on Finitely Many Small Boundary Parts in the Critical Case


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the boundary value problem for eigenvalues of the negative Laplace operator in a disk with the Neumann boundary condition on the circle except for finitely many (more than 1) small arcs, where the Dirichlet boundary condition is imposed, with lengths tending to zero. We construct complete asymptotics expansions of egenvalues with respect to the parameter (the arc length) converging to a double eigenvalue to the limit Neumann problem, in the critical case, where one of the eigenfunctions of the limit problem vanishes at all contraction points for small arcs.

作者简介

R. Gadyl’shin

M. Akmullah Bashkir State Pedagogical University; Bashkir State University

编辑信件的主要联系方式.
Email: gadylshin@yandex.ru
俄罗斯联邦, 3a, Oktyabrskoy Revolutsii St., Ufa, 450000; 32, Frunze st., Ufa, 450074

S. Rep’evskii

Chelyabinsk State University

Email: gadylshin@yandex.ru
俄罗斯联邦, 129, Brat’ev Kashirinykh St., Chelyabinsk, 454000

E. Shishkina

M. Akmullah Bashkir State Pedagogical University

Email: gadylshin@yandex.ru
俄罗斯联邦, 3a, Oktyabrskoy Revolutsii St., Ufa, 450000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016