Arithmetical Rings and Quasi-Projective Ideals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is proved that a commutative ring A is arithmetical if and only if every finitely generated ideal M of the ring A is a quasi-projective A-module and every endomorphism of this module can be extended to an endomorphism of the module AA. These results are proved with the use of some general results on invariant arithmetical rings.

作者简介

A. Tuganbaev

National Research University “MPEI”

编辑信件的主要联系方式.
Email: tuganbaev@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016