Arithmetical Rings and Quasi-Projective Ideals
- 作者: Tuganbaev A.A.1
-
隶属关系:
- National Research University “MPEI”
- 期: 卷 213, 编号 2 (2016)
- 页面: 268-271
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237176
- DOI: https://doi.org/10.1007/s10958-016-2715-3
- ID: 237176
如何引用文章
详细
It is proved that a commutative ring A is arithmetical if and only if every finitely generated ideal M of the ring A is a quasi-projective A-module and every endomorphism of this module can be extended to an endomorphism of the module AA. These results are proved with the use of some general results on invariant arithmetical rings.
作者简介
A. Tuganbaev
National Research University “MPEI”
编辑信件的主要联系方式.
Email: tuganbaev@gmail.com
俄罗斯联邦, Moscow
补充文件
