Arithmetical Rings and Quasi-Projective Ideals
- Autores: Tuganbaev A.A.1
-
Afiliações:
- National Research University “MPEI”
- Edição: Volume 213, Nº 2 (2016)
- Páginas: 268-271
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237176
- DOI: https://doi.org/10.1007/s10958-016-2715-3
- ID: 237176
Citar
Resumo
It is proved that a commutative ring A is arithmetical if and only if every finitely generated ideal M of the ring A is a quasi-projective A-module and every endomorphism of this module can be extended to an endomorphism of the module AA. These results are proved with the use of some general results on invariant arithmetical rings.
Palavras-chave
Sobre autores
A. Tuganbaev
National Research University “MPEI”
Autor responsável pela correspondência
Email: tuganbaev@gmail.com
Rússia, Moscow
Arquivos suplementares
