Arithmetical Rings and Quasi-Projective Ideals


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is proved that a commutative ring A is arithmetical if and only if every finitely generated ideal M of the ring A is a quasi-projective A-module and every endomorphism of this module can be extended to an endomorphism of the module AA. These results are proved with the use of some general results on invariant arithmetical rings.

Sobre autores

A. Tuganbaev

National Research University “MPEI”

Autor responsável pela correspondência
Email: tuganbaev@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016