Groups Acting on Dendrons
- 作者: Malyutin A.V.1
-
隶属关系:
- St.Petersburg Department of Steklov Mathematical Institute
- 期: 卷 212, 编号 5 (2016)
- 页面: 558-565
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237080
- DOI: https://doi.org/10.1007/s10958-016-2688-2
- ID: 237080
如何引用文章
详细
A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.
作者简介
A. Malyutin
St.Petersburg Department of Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: malyutin@pdmi.ras.ru
俄罗斯联邦, St.Petersburg
补充文件
