Groups Acting on Dendrons
- Autores: Malyutin A.V.1
-
Afiliações:
- St.Petersburg Department of Steklov Mathematical Institute
- Edição: Volume 212, Nº 5 (2016)
- Páginas: 558-565
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237080
- DOI: https://doi.org/10.1007/s10958-016-2688-2
- ID: 237080
Citar
Resumo
A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal.
Palavras-chave
Sobre autores
A. Malyutin
St.Petersburg Department of Steklov Mathematical Institute
Autor responsável pela correspondência
Email: malyutin@pdmi.ras.ru
Rússia, St.Petersburg
Arquivos suplementares
