Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 239, № 5 (2019)

Article

Morse–Smale Systems and Topological Structure of Carrier Manifolds

Grines V., Zhuzhoma Y., Pochinka O.

Аннотация

We review the results describing the connection between the global dynamics of Morse–Smale systems on closed manifolds and the topology of carrier manifolds. Also we consider the results related to topological classification of Morse–Smale systems.

Journal of Mathematical Sciences. 2019;239(5):549-581
pages 549-581 views

Oldroyd Model for Compressible Fluids

Zakora D.

Аннотация

In this paper, mathematical models of compressible viscoelastic Maxwell, Oldroyd, and Kelvin–Voigt fluids are derived. A model of rotating viscoelastic barotropic Oldroyd fluid is studied. A theorem on strong unique solvability of the corresponding initial-boundary value problem is proved. The spectral problem associated with such a system is studied. Results on the spectrum localization, essential and discrete spectra, and spectrum asymptotics are obtained. In the case where the system is in the weightlessness state and does not rotate, results on multiple completeness and basis property of a special system of elements are proved. In such a case, under the assumption the viscosity is sufficiently large, an expansion of the solution of the evolution problem with respect to a special system of elements is obtained.

Journal of Mathematical Sciences. 2019;239(5):582-607
pages 582-607 views

Abstract Mixed Boundary-Value and Spectral Conjugation Problems and their Applications

Kopachevskii N., Radomirskaya K.

Аннотация

Based on the abstract Green formula, we study a general approach to abstract boundary value conjugation problems. We consider examples of some configurations of docked domains for conjugation problems, using the generalized Green formula for the Laplace operator. Also, we consider spectral problems with two complex parameters: one of them can be treated as a fixed one, while the other can be treated as the spectral one. By means of the proposed general approach, we reduce those problems to the spectral problem for operator bundles with self-adjoint operator coefficients acting in Hilbert space and depending on two parameters.

Journal of Mathematical Sciences. 2019;239(5):608-643
pages 608-643 views

On the Volume Formula for a Hyperbolic Octahedron with mm2-Symmetry

Krasnov V., Khisyametdinova E.

Аннотация

In this paper, explicit integral volume formulas for arbitrary compact hyperbolic octahedra with mm2-symmetry are obtained in terms of dihedral angles. Also, we provide an algorithm to compute the volume of such octahedra in spherical spaces.

Journal of Mathematical Sciences. 2019;239(5):644-653
pages 644-653 views

Topological Algebras of Measurable and Locally Measurable Operators

Muratov M., Chilin V.

Аннотация

In this paper, we review the results on topological ∗-algebras S(M), S(M, τ), and LS(M) of measurable, τ -measurable, and locally measurable operators affiliated with the von Neumann algebra M. Also, we consider relations between those algebras for different classes of von Neumann algebras and establish the continuity of operator-valued functions with respect to the local convergence in measure. We describe maximal commutative ∗-subalgebras of the algebra LS(M) as well.

Journal of Mathematical Sciences. 2019;239(5):654-705
pages 654-705 views

On Coercive Solvability of Parabolic Equations with Variable Operators

Hanalyev A.

Аннотация

In a Banach space E, the Cauchy problem

\( \upsilon^{\prime }(t)+A(t)\upsilon (t)=f(t)\kern1em \left(0\le t\le 1\right),\kern1em \upsilon (0)={\upsilon}_0, \)

is considered for a differential equation with linear strongly positive operator A(t) such that its domain D = D(A(t)) does not depend on t and is everywhere dense in E and A(t) generates an analytic semigroup exp{−sA(t)}(s ≥ 0). Under natural assumptions on A(t), we prove the coercive solvability of the Cauchy problem in the Banach space \( {C}_0^{\beta, \upgamma} \) (E). We prove a stronger estimate for the solution compared with estimates known earlier, using weaker restrictions on f(t) and v0.

Journal of Mathematical Sciences. 2019;239(5):706-724
pages 706-724 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».