Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 229, № 3 (2018)

Article

Analysis of the Spectral Stability of the Generalized Runge–Kutta Methods Applied to Initial-Boundary-Value Problems for Equations of the Parabolic Type. I. Explicit Methods

Yankovskii A.

Аннотация

We develop a general algorithm for the analysis the spectral stability of generalized multistage Runge–Kutta methods of various orders of accuracy as applied to the numerical integration with respect to time of an initial-boundary-value problem for the second-order parabolic equation. The expression for the function of spectral stability is obtained in two alternative forms: on the basis of matrix relations and in the determinant form. We study specific realizations of various generalized explicit Runge–Kutta methods and their spectral stability. It is shown that all explicit generalized Runge–Kutta methods possess the property of conditional spectral stability and the property of conditional monotonicity of the numerical solution in time whose violation leads to the appearance of false oscillations of the approximate solution. The stability function for these methods is polynomial. It is shown that the application of two-stage generalized explicit Runge–Kutta methods leads to the appearance of predictor-corrector-type schemes. In the case of nonstationary one-dimensional heat-conduction problem, on the basis of a one-stage generalized Runge–Kutta method, we obtain the classical two-layer conditionally stable explicit finite-difference scheme on a four-point template. It is demonstrated that the five-stage generalized Runge–Kutta–Merson method is characterized by the weakest condition of spectral stability as compared with all investigated explicit generalized Runge–Kutta methods.

Journal of Mathematical Sciences. 2018;229(3):227-240
pages 227-240 views

Energy of Motion of Internal and Surface Waves in a Two-Layer Hydrodynamic System

Avramenko O., Naradovyi V., Selezov I.

Аннотация

We study the energy of wave motion in a two-layer “layer with solid bottom–layer with free surface” hydrodynamic system. The dependences of the energies of motion of internal and surface waves on the geometric and physical parameters of the system are analyzed. The contribution of the second approximation to the total energy of the system is estimated. The reliability of the obtained results is verified. The results are graphically illustrated.

Journal of Mathematical Sciences. 2018;229(3):241-252
pages 241-252 views

Solution of the Problem of Free Vibrations of a Nonthin Orthotropic Shallow Shell of Variable Thickness in the Refined Statement

Grigorenko O., Parkhomenko O., Vasil’eva L., Borisenko М.

Аннотация

We consider the problem of investigation of the spectrum of natural vibrations of a nonthin orthotropic shallow shell variable in two coordinate directions of thickness in the nonclassical statement. The approach to the solution of the obtained two-dimensional boundary-value problem is based on its reduction (by the method of spline-approximation of the unknown functions along one coordinate direction) to the one-dimensional problem with its subsequent solution. We study different cases of boundary conditions imposed on the contours of the shell. We also perform the comparison and analysis of the natural frequencies and modes of vibrations of orthotropic shells of constant and variable thickness.

Journal of Mathematical Sciences. 2018;229(3):253-268
pages 253-268 views

Influence of the Variations of Orthotropy Parameters on the Stress State of Hollow Cylinders with Concave Corrugated Cross Sections

Grigorenko Y., Rozhok L.

Аннотация

In the three-dimensional statement, by the method of approximation of functions by discrete Fourier series, we analyze the influence of orthotropy parameters on the stress state of hollow cylinders with cross sections in the form of connected concave semicorrugations subjected to the action of internal pressure under certain conditions on the ends. The results of investigations of the stress state are presented in the form of plots and a table.

Journal of Mathematical Sciences. 2018;229(3):269-279
pages 269-279 views

Bending of an Isotropic Plate with Two Identical Coaxial Through Cracks Depending on the Width of the Contact Zone of Their Faces and in the Presence of Plastic Zones Near Their Tips

Opanasovych V., Slobodyan М.

Аннотация

We formulate and solve the problem of biaxial bending of an isotropic plate with two coaxial through cracks of identical lengths by distributed bending moments applied at infinity under the action of external load symmetric about the cracks with regard for the contact zone of their faces and in the presence of plastic zones near the crack tips, where the Tresca plasticity conditions are satisfied in the form of a surface layer or a plastic hinge. By using complex potentials of the plane problem and the classical theory of bending of the plates, we obtain an analytic solution of the problem in the class of functions bounded in the vicinity of the vertices of the plastic zones. The length of the plastic zones and the crack-tip opening displacements are found numerically.

Journal of Mathematical Sciences. 2018;229(3):280-291
pages 280-291 views

Viscoelastic Stresses in the Plates Containing Inclusions with Cracks

Solyar T.

Аннотация

We study viscoelastic stresses in the plates containing inclusions weakened by cracks by the method of boundary integral equations and the Laplace integral transformation. The case in which the rheological relations between stresses and strains are written in the differential form is analyzed in detail. To solve the boundary problem of viscoelasticity, we use the well-known approach in which the corresponding problem of the theory of elasticity is studied by replacing the differential operators with constant quantities. The solution of the auxiliary problem is obtained by the method of boundary integral equations reduced to a system of algebraic equations. After replacing the elastic quantities in this system by the corresponding differential operators, we solve the system obtained as a result by using the Laplace integral transformation and then applying the improved numerical-analytic inversion formula adapted to this class of problems.

Journal of Mathematical Sciences. 2018;229(3):292-306
pages 292-306 views

Generalized Continuum Phenomenological Model of Viscous Fluid: Analysis of Local Mass Displacements

Hrytsyna О.

Аннотация

The concept of local mass displacements (as a measure of nonlocality of the state of a physically small element of a body) is used to formulate a complete system of relations of the gradient-type mathematical model of viscous compressible fluid. In this model, the relationship between the thermomechanical processes and the process of local mass displacements, its irreversibility, and the inertia properties are taken into account. It is shown that, in the stationary approximation, the obtained system of relations enables us to justify the appearance of wedging pressure in thin interlayers of fluid.

Journal of Mathematical Sciences. 2018;229(3):307-319
pages 307-319 views

Mathematical Model for the Emission Infrared Tomography of the Temperature Field in an Isotropic Layer

Chekurin V., Boichuk Y.

Аннотация

We consider a mathematical model for the determination of the temperature field in a layer that emits, absorbs, and scatters infrared radiation both in the volume and on the surface. Within the framework of the model, we formulate nonlinear direct and inverse problems of emission infrared tomography of the temperature field in the layer according to known space-and-angular distributions of the flows of infrared radiation emitted into the ambient medium. The iterative-variational methods are proposed for the solution of the indicated direct and inverse problems. As a specific example, we perform the numerical analysis of the developed algorithms.

Journal of Mathematical Sciences. 2018;229(3):320-334
pages 320-334 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».