On Stably Biserial Algebras and the Auslander–Reiten Conjecture for Special Biserial Algebras
- Авторы: Antipov M.A.1, Zvonareva A.O.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 240, № 4 (2019)
- Страницы: 375-394
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242753
- DOI: https://doi.org/10.1007/s10958-019-04358-y
- ID: 242753
Цитировать
Аннотация
According to a result claimed by Pogorza_ly, selfinjective special biserial algebras can be stably equivalent to stably biserial algebras only, and these two classes coincide. By an example of Ariki, Iijima, and Park, the classes of stably biserial and selfinjective special biserial algebras do not coincide. In these notes based on some ideas from the Pogorzały paper, a detailed proof is given for the fact that a selfinjective special biserial algebra can be stably equivalent to a stably biserial algebra only. The structure of symmetric stably biserial algebras is analyzed. It is shown that in characteristic other than 2, the classes of symmetric special biserial (Brauer graph) algebras and symmetric stably biserial algebras coincide. Also a proof of the Auslander–Reiten conjecture for special biserial algebras is given.
Об авторах
M. Antipov
St. Petersburg State University
Автор, ответственный за переписку.
Email: hyperbor@list.ru
Россия, St. Petersburg
A. Zvonareva
St. Petersburg State University
Email: hyperbor@list.ru
Россия, St. Petersburg
Дополнительные файлы
