On the Kernel of a Two-Point Problem for a Partial Differential Equation of the Second Order in Time
- Авторы: Nytrebych Z.М.1, Malanchuk О.М.1,2
-
Учреждения:
- “L’vivs’ka Politekhnika” National University
- Danylo Halyts’kyi Lviv National Medical University
- Выпуск: Том 236, № 1 (2019)
- Страницы: 35-52
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242168
- DOI: https://doi.org/10.1007/s10958-018-4096-2
- ID: 242168
Цитировать
Аннотация
We study the problem for a homogeneous partial differential equation of the second order with respect to time with given homogeneous two-point conditions in this variable and, in general, of the infinite order in the other (space) variable. It is proved that the analyzed problem possesses solely the trivial solution if the characteristic determinant is not identically equal to zero. In the case where the set of zeros of the characteristic determinant of this problem is nonempty, we propose a method for the construction of nontrivial solutions of the problem.
Об авторах
Z. Nytrebych
“L’vivs’ka Politekhnika” National University
Email: Jade.Santos@springer.com
Украина, Lviv
О. Malanchuk
“L’vivs’ka Politekhnika” National University; Danylo Halyts’kyi Lviv National Medical University
Email: Jade.Santos@springer.com
Украина, Lviv; Lviv
Дополнительные файлы
