On Some Degenerate Elliptic Equations Arising in Geometric Problems
- Авторы: Capuzzo Dolcetta I.1, Leoni F.1, Vitolo A.2
-
Учреждения:
- Dipartimento di Matematica, Sapienza Università di Roma
- Dipartimento di Matematica, Università di Salerno
- Выпуск: Том 233, № 4 (2018)
- Страницы: 446-461
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241567
- DOI: https://doi.org/10.1007/s10958-018-3937-3
- ID: 241567
Цитировать
Аннотация
We consider some fully nonlinear degenerate elliptic operators and we investigate the validity of certain properties related to the maximum principle. In particular, we establish the equivalence between the sign propagation property and the strict positivity of a suitably defined generalized principal eigenvalue. Furthermore, we show that even in the degenerate case considered in the present paper, the well-known condition introduced by Keller–Osserman on the zero-order term is necessary and sufficient for the existence of entire weak subsolutions.
Об авторах
I. Capuzzo Dolcetta
Dipartimento di Matematica, Sapienza Università di Roma
Автор, ответственный за переписку.
Email: capuzzo@mat.uniroma1.it
Италия, Roma
F. Leoni
Dipartimento di Matematica, Sapienza Università di Roma
Email: capuzzo@mat.uniroma1.it
Италия, Roma
A. Vitolo
Dipartimento di Matematica, Università di Salerno
Email: capuzzo@mat.uniroma1.it
Италия, Salerno
Дополнительные файлы
