Singularly Perturbed System of Parabolic Equations in the Critical Case
- Авторы: Omuraliev A.S.1, Kulmanbetova S.2
-
Учреждения:
- Kyrgyz Turkish Manas University
- Naryn State University
- Выпуск: Том 230, № 5 (2018)
- Страницы: 728-731
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240856
- DOI: https://doi.org/10.1007/s10958-018-3778-0
- ID: 240856
Цитировать
Аннотация
We examine a system of singularly perturbed parabolic equations in the case where the small parameter is involved as a coefficient of both time and spatial derivatives and the spectrum of the limit operator has a multiple zero point. In such problems, corner boundary layers appear, which can be described by products of exponential and parabolic boundary-layer functions. Under the assumption that the limit operator is a simple-structure operator, we construct a regularized asymptotics of a solution, which, in addition to corner boundary-layer functions, contains exponential and parabolic boudary-layer functions. The construction of the asymptotics is based on the regularization method for singularly perturbed problems developed by S. A. Lomov and adapted to singularly perturbed parabolic equations with two viscous boundaries by A. S. Omuraliev.
Об авторах
A. Omuraliev
Kyrgyz Turkish Manas University
Автор, ответственный за переписку.
Email: asan.omuraliev@mail.ru
Киргизия, Bishkek
S. Kulmanbetova
Naryn State University
Email: asan.omuraliev@mail.ru
Киргизия, Naryn
Дополнительные файлы
