Singularly Perturbed System of Parabolic Equations in the Critical Case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We examine a system of singularly perturbed parabolic equations in the case where the small parameter is involved as a coefficient of both time and spatial derivatives and the spectrum of the limit operator has a multiple zero point. In such problems, corner boundary layers appear, which can be described by products of exponential and parabolic boundary-layer functions. Under the assumption that the limit operator is a simple-structure operator, we construct a regularized asymptotics of a solution, which, in addition to corner boundary-layer functions, contains exponential and parabolic boudary-layer functions. The construction of the asymptotics is based on the regularization method for singularly perturbed problems developed by S. A. Lomov and adapted to singularly perturbed parabolic equations with two viscous boundaries by A. S. Omuraliev.

Sobre autores

A. Omuraliev

Kyrgyz Turkish Manas University

Autor responsável pela correspondência
Email: asan.omuraliev@mail.ru
Киргизия, Bishkek

S. Kulmanbetova

Naryn State University

Email: asan.omuraliev@mail.ru
Киргизия, Naryn

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018