On the Jordan Block Structure of a Product of Long and Short Root Elements in Irreducible Representations of Algebraic Groups of Type Br
- Авторлар: Busel T.S.1
-
Мекемелер:
- Institute of Mathematics of the National Academy of Sciences of Belarus
- Шығарылым: Том 219, № 3 (2016)
- Беттер: 346-354
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238571
- DOI: https://doi.org/10.1007/s10958-016-3110-9
- ID: 238571
Дәйексөз келтіру
Аннотация
The behavior of a product of commuting long and short root elements of the group of type Br in p-restricted irreducible representations is investigated. For such representations with certain local properties of highest weights, it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. For a p-restricted representation with highest weight a1ω1 +· · ·+arωr, this fact is proved when aj ≠ p − 1 for some j < r − 1 and one of the following conditions holds: (1) \( {a}_r\ne p-1\kern0.75em and\kern0.5em {\displaystyle \sum_{i=1}^{r-2}{a}_i\ge p-1;} \)and (2) \( 2{a}_{r-1}+{a}_r or (r−3) (p-1) for ar= p−1.
Авторлар туралы
T. Busel
Institute of Mathematics of the National Academy of Sciences of Belarus
Хат алмасуға жауапты Автор.
Email: tbusel@gmail.com
Белоруссия, Minsk
Қосымша файлдар
