Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole
- Autores: Davletov D.B.1, Davletov O.B.2
-
Afiliações:
- M. Akmulla Bashkir State Pedagogical University
- Ufa State Petroleum Technological University
- Edição: Volume 241, Nº 5 (2019)
- Páginas: 549-555
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242916
- DOI: https://doi.org/10.1007/s10958-019-04444-1
- ID: 242916
Citar
Resumo
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero.
Sobre autores
D. Davletov
M. Akmulla Bashkir State Pedagogical University
Autor responsável pela correspondência
Email: davletovdb@mail.ru
Rússia, Ufa
O. Davletov
Ufa State Petroleum Technological University
Email: davletovdb@mail.ru
Rússia, Ufa
Arquivos suplementares
