Traces of Generalized Solutions of Elliptic Differential-Difference Equations with Degeneration


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper is devoted to differential-difference equations with degeneration in a bounded domain Q ⊂ ℝn. We consider differential-difference operators that cannot be expressed as a composition of a strongly elliptic differential operator and a degenerated difference operator. Instead of this, the operators under consideration contain several degenerate difference operators corresponding to differential operators. Generalized solutions of such equations may not belong even to the Sobolev space \( {W}_2^1(Q) \).

Earlier, under certain conditions on the difference and differential operators, we obtained a priori estimates and proved that, instead of the whole domain, the orthogonal projection of the generalized solution to the image of the difference operator preserves certain smoothness inside some subdomains \( {Q}_r\subset Q\left(\underset{r}{\mathrm{U}}{\overline{Q}}_r=\overline{Q}\right) \).

In this paper, we prove necessary and sufficient conditions in algebraic form for the existence of traces on parts of boundaries of subdomains Qr.

Sobre autores

V. Popov

RUDN University

Autor responsável pela correspondência
Email: volodimir.a@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019