Tauberian Theorem for Games with Unbounded Running Cost


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study two game families with total payoffs that are defined either as the Cesàro average (the long run average game family) or Abel average (the discounting game family) of the running costs. We study value functions for all sufficiently small discounts and for all sufficiently large planning horizons (asymptotic approach), investigate a robust strategy that provides a near-optimal total payoff in this case (uniform approach). Assuming the Dynamic Programming Principle, we prove the corresponding Tauberian theorems without requiring the boundedness of the running cost.

Sobre autores

D. Khlopin

Krasovskii Institute of Mathematics and Mechanics RAS

Autor responsável pela correspondência
Email: khlopin@imm.uran.ru
Rússia, 16, S. Kovalevskaya St., Yekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019