Pseudo-Parabolic Regularization of Forward-Backward Parabolic Equations with Bounded Nonlinearities


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the initial-boundary value problem

\( \Big\{{\displaystyle \begin{array}{l} ut={\left[\varphi (u)\right]}_{xx}+\varepsilon {\left[\psi (u)\right]}_{txx}\kern1em \mathrm{in}\;\varOmega \times \left(0,T\right]\\ {}\varphi (u)+\varepsilon {\left[\psi (u)\right]}_t=0\kern3em \mathrm{in}\;\partial \varOmega \times \left(0,T\right]\\ {}u={u}_0\ge 0\kern7em \mathrm{in}\;\varOmega \times \left\{0\right\},\end{array}} \)

with Radon measure-valued initial data, by assuming that the regularizing term ψ is bounded and increasing (the cases of power-type or logarithmic ψ were examined in [2, 3] for spaces on any dimension). The function ???? is nonmonotone and bounded, and either (i) decreases and vanishes at infinity, or (ii) increases at infinity. The existence of solutions in a space of positive Radon measures is proved in both cases. Moreover, a general result on the spontaneous appearance of singularities in he case (i) is presented. The case of a cubic-like ???? is also discussed to point out the influence of the behavior at infinity of ???? on the regularity of solutions.

Авторлар туралы

A. Tesei

Istituto per le Applicazioni del Calcolo “M. Picone,”, Consiglio Nazionale delle Ricerche

Хат алмасуға жауапты Автор.
Email: albertotesei@gmail.com
Италия, Rome

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018