K-Closedness for Weighted Hardy Spaces on the Torus ????2


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We obtain certain sufficient conditions under which the couple of weighted Hardy spaces

\( \left({H}_r\left({w}_1\left(\cdot, \cdot \right)\right),{H}_s\left({w}_2\left(\cdot, \cdot \right)\right)\right) \)

on the two-dimensional torus ????2 is K-closed in the couple (Lr(w1( · , · )), Ls(w2( · , · ))). For 0 < r < s < 1, the condition w1, w2A suffices (A is the Muckenhoupt condition over rectangles). For 0 < r < 1 < s < ∞, it suffices that w1 ∈ A and w2 ∈ As. For 1 < r < s = ∞, we assume that the weights are of the form wi(z1, z2) = ai(z1)ui(z1, z2)bi(z2), and then the following conditions suffice: u1Ap, u2 ∈ A1, \( {u}_2^p{u}_1\in {\mathrm{A}}_{\infty } \) , and log ai, log bi ∈ BMO. The last statement generalizes the previously known result for the case of ui ≡ 1, i = 1, 2. Finally, for r = 1, s = ∞, the conditions w1, w2 ∈ A1 and w1w2 ∈ A suffice.

Sobre autores

V. Borovitskiy

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University

Autor responsável pela correspondência
Email: viacheslav.borovitskiy@gmail.com
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018