On the Connection Between the Chromatic Number of a Graph and the Number of Cycles Covering a Vertex or an Edge


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove several tight bounds on the chromatic number of a graph in terms of the minimum number of simple cycles covering a vertex or an edge of this graph. Namely, we prove that X(G) ≤ k in the following two cases: any edge of G is covered by less than [e(k − 1) !  − 1] simple cycles, or any vertex of G is covered by less than \( \left[\frac{ek!}{2}-\frac{k+1}{2}\right] \) simple cycles. Tight bounds on the number of simple cycles covering an edge or a vertex of a k-critical graph are also proved.

Sobre autores

S. Berlov

Physics and Mathematics Lyceum 239

Autor responsável pela correspondência
Email: sberlov@rambler.ru
Rússia, St.Petersburg

K. Tyschuk

Physics and Mathematics Lyceum 239

Email: sberlov@rambler.ru
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018