On a product of the inner radii of symmetric multiply connected domains
- Autores: Zabolotnyi Y.V.1, Vyhivska L.V.1
-
Afiliações:
- Institute of Mathematics of the NAS of Ukraine
- Edição: Volume 231, Nº 1 (2018)
- Páginas: 101-109
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241093
- DOI: https://doi.org/10.1007/s10958-018-3808-y
- ID: 241093
Citar
Resumo
The article is devoted to the study of a quite general problem of the geometric theory of functions on an extreme decomposition of the complex plane. The problem of maximum of the functional
where γ ∈ (0, 1], n ≥ 2, a0 = 0,\( \left|{a}_k\right|=1,k=\overline{1,n},\kern0.5em {a}_k\in {B}_k\subset \overline{\mathrm{C}},k=\overline{0,n},{\left\{{B}_k\right\}}_{k=0}^n \) are pairwise disjoint domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B, a) is the inner radius of the domain B ⊂ \( \overline{\mathrm{C}} \) relative to the point a ∈ B, is considered.
Sobre autores
Yaroslav Zabolotnyi
Institute of Mathematics of the NAS of Ukraine
Autor responsável pela correspondência
Email: yaroslavzabolotnii@gmail.com
Ucrânia, Kiev
Liudmyla Vyhivska
Institute of Mathematics of the NAS of Ukraine
Email: yaroslavzabolotnii@gmail.com
Ucrânia, Kiev
Arquivos suplementares
