On quasiconformal maps and semilinear equations in the plane


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Assume that Ω is a domain in the complex plane ℂ and A(z) is a symmetric 2×2 matrix function with measurable entries, detA = 1; and such that 1/K|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2, ξ ∈ ℝ2, 1 ≤ K <  ∞ . In particular, for semilinear elliptic equations of the form div (A(z)∇u(z)) = f(u(z)) in Ω; we prove a factorization theorem that asserts that every weak solution u to the above equation can be expressed as the composition u = To????; where ???? : Ω → G stands for a K−quasiconformal homeomorphism generated by the matrix function A(z); and T(w) is a weak solution of the semilinear equation ∇T(w) = J(w)f(T(w)) in G: Here, the weight J(w) is the Jacobian of the inverse mapping ????1: Similar results hold for the corresponding nonlinear parabolic and hyperbolic equations. Some applications of these results to anisotropic media are given.

Sobre autores

Vladimir Gutlyanskiĭ

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Autor responsável pela correspondência
Email: vgutlyanskii@gmail.com
Ucrânia, Slavyansk

Olga Nesmelova

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: vgutlyanskii@gmail.com
Ucrânia, Slavyansk

Vladimir Ryazanov

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Email: vgutlyanskii@gmail.com
Ucrânia, Slavyansk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018