Monotone Orbifold Hurwitz Numbers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In general, the Hurwitz numbers count the branched covers of the Riemann sphere with prescribed ramification data or, equivalently, the factorizations of a permutation with prescribed cycle structure data. In the present paper, the study of monotone orbifold Hurwitz numbers is initiated. These numbers are both variations of the orbifold case and generalizations of the monotone case. These two cases have previously been studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion. Bibliography: 27 titles.

Sobre autores

N. Do

School of Mathematical Sciences Monash University

Autor responsável pela correspondência
Email: norm.do@monash.edu
Austrália, Melbourne

M. Karev

St.Petersburg Department of the Steklov Mathematical Institute

Email: norm.do@monash.edu
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017