The Congruent Centralizer of a Block Diagonal Matrix
- Autores: Ikramov K.D.1
-
Afiliações:
- Moscow Lomonosov State University
- Edição: Volume 224, Nº 6 (2017)
- Páginas: 877-882
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239705
- DOI: https://doi.org/10.1007/s10958-017-3457-6
- ID: 239705
Citar
Resumo
Let a complex matrix A be the direct sum of its square submatrices B and C that have no common eigenvalues. Then every matrix X belonging to the centralizer of A has the same block diagonal form as the matrix A. This paper discusses how the conditions on the submatrices B and C should be modified for an analogous assertion about the congruent centralizer of A, which is the set of matrices X such that X*AX = A, to be valid. Also the question whether the matrices in the congruent centralizer are block diagonal if A is a block anti-diagonal matrix is considered. Bibliography: 2 titles.
Sobre autores
Kh. Ikramov
Moscow Lomonosov State University
Autor responsável pela correspondência
Email: ikramov@cs.msu.su
Rússia, Moscow
Arquivos suplementares
