Exact constants in Jackson-type inequalities for the best mean square approximation in L2(ℝ) and exact values of mean ????-widths of the classes of functions
- Autores: Vakarchuk S.B.1
-
Afiliações:
- A. Nobel University
- Edição: Volume 224, Nº 4 (2017)
- Páginas: 582-603
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239646
- DOI: https://doi.org/10.1007/s10958-017-3437-x
- ID: 239646
Citar
Resumo
On the classes of functions \( {L}_2^r\left(\mathbb{R}\right) \), where r ∈ℤ+, for the characteristics of smoothness \( {\Lambda}_k\left(f,t\right)={\left\{\left(1/t\right){\int}_0^t\left\Vert {\varDelta}_h^k(f)\left\Vert {}^2\right. dh\right.\right\}}^{\kern0em 1/2},t\in \left(0,\infty \right),k\in \mathbb{N} \), the exact constants in the Jackson-type inequalities have been obtained in the case of the best mean square approximation by entire functions of the exponential type in the space L2(ℝ). The exact values of mean ????-widths of the classes of functions defined by Λk(f) and the majorants Ψ satisfying some conditions are calculated.
Sobre autores
Sergei Vakarchuk
A. Nobel University
Autor responsável pela correspondência
Email: sbvakarchuk@mail.ru
Ucrânia, Dnipro
Arquivos suplementares
