Block-Diagonal Similarity and Semiscalar Equivalence of Matrices
- Autores: Shavarovskii B.Z.1
-
Afiliações:
- Pidstyhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
- Edição: Volume 222, Nº 1 (2017)
- Páginas: 35-49
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239145
- DOI: https://doi.org/10.1007/s10958-017-3280-0
- ID: 239145
Citar
Resumo
We determine the canonical form of a complex matrix B with respect to the similarity B → S−1BS, where S is the direct sum of invertible upper triangular Toeplitz blocks. The conditions necessary and sufficient for the semiscalar equivalence of one type of polynomial matrices are established.
Sobre autores
B. Shavarovskii
Pidstyhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences
Email: Jade.Santos@springer.com
Ucrânia, Lviv
Arquivos suplementares
