Circular Unitary Ensembles: Parametric Models and Their Asymptotic Maximum Likelihood Estimates


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Parametrized families of distributions for the circular unitary ensemble in random matrix theory are considered; they are connected to Toeplitz determinants and have many applications in mathematics (for example, to the longest increasing subsequences of random permutations) and physics (for example, to nuclear physics and quantum gravity). We develop a theory for the unknown parameter estimated by an asymptotic maximum likelihood estimator, which, in the limit, behavesas the maximum likelihood estimator if the latter is well defined and the family is sufficiently smooth. They are asymptotically unbiased and normally distributed, where the norming constants are unconventional because of long range dependence.

Sobre autores

R. Dakovic

Georg-August-Universität

Email: mhd13@psu.edu
Alemanha, Göttingen

M. Denker

Pennsylvania State University

Autor responsável pela correspondência
Email: mhd13@psu.edu
Estados Unidos da América, Philadelphia

M. Gordin

St.Petersburg Department of the Steklov Mathematical Institute

Email: mhd13@psu.edu
Rússia, St.Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016