Asymptotic Properties of Chebyshev Splines with Fixed Number of Knots


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

V. M. Tikhomirov expressed Kolmogorov widths of the class Wr := Wr[−1, 1] in the space C := C[1, 1] as a norm of special splines: dN(WrC) = ‖xN − r, rC, N ≥ r; these splines were named Chebyshev splines. The function xn,r is a perfect spline of order r with n knots. We study the asymptotic behavior of Chebyshev splines for r→∞and fixed n. We calculate the asymptotics of knots and the C-norm of xn,r and prove that xn,r/xn,r(1) = Tn+r+o(1). As a corollary, we obtain that dn+r(Wr, C)/dr(Wr, C) ~ Anr−n/2 as r→∞.

Sobre autores

Yu. Malykhin

Steklov Mathematical Institute

Autor responsável pela correspondência
Email: jura05@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016