On the Littlewood–Offord Problem
- Autores: Eliseeva Y.S.1,2, Zaitsev A.Y.3
-
Afiliações:
- St.Petersburg State University
- the Chebyshev Laboratory, St.Petersburg State University
- St.Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
- Edição: Volume 214, Nº 4 (2016)
- Páginas: 467-473
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237429
- DOI: https://doi.org/10.1007/s10958-016-2790-5
- ID: 237429
Citar
Resumo
The paper deals with studying a connection between the Littlewood–Offord problem and estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of Arak’s results (1980) are given. They establish a relationship of the concentration function of the sum and arithmetic structure of supports of the distributions of independent random vectors for arbitrary distributions of summands. Bibliography: 21 titles.
Sobre autores
Yu. Eliseeva
St.Petersburg State University; the Chebyshev Laboratory, St.Petersburg State University
Autor responsável pela correspondência
Email: pochta106@yandex.ru
Rússia, St.Petersburg
A. Zaitsev
St.Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
Email: pochta106@yandex.ru
Rússia, St. Petersburg
Arquivos suplementares
