An analog of the Schwartz theorem on spectral analysis on a hyperbolic plane


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let \( \mathbb{D} \) be an open unit disk in the complex plane. It is shown that every subspace in C(\( \mathbb{D} \)) invariant under weighted conformal shifts contains a radial eigenfunction of the corresponding invariant differential operator. This function can be expressed via the Gauss hypergeometric function and is a generalization of the spherical function on the disk \( \mathbb{D} \) which is considered as a hyperbolic plane with the corresponding Riemannian structure.

Sobre autores

Valery Volchkov

Donetsk National University

Autor responsável pela correspondência
Email: valeriyvolchkov@gmail.com
Ucrânia, Donetsk

Vitaly Volchkov

Donetsk National University

Email: valeriyvolchkov@gmail.com
Ucrânia, Donetsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016